CHAPTER 6

UNIFIED ACID/ALKALINE ANALYSIS

to determine ...

- ANAEROBIC/DYSAEROBIC IMBALANCE
- GLUCOGENIC/KETOGENIC IMBALANCE
- ACID/ALKALINE IMBALANCE

Analysis Instructions and Supplement Selection

- This Unified Acid/Alkaline Analysis is one of three Analyses that constitute your NUTRI-SPEC Metabolic Imbalance Analysis. [The other two Analyses are your Sympathetic/Parasympathetic Imbalance Analysis and your Electrolyte/Water Analysis. The effective sequence for analyzing your patient's test results is to do the three Analyses in order --- Unified Acid/Alkaline Analysis, followed by Electrolyte/Water Analysis, and then Sympathetic/ Parasympathetic Imbalance Analysis.]
- You may perform this Analysis as a stand-alone procedure --- or --integrate the findings as part of your Electrolyte/Water Analysis \&/or your Sympathetic/Parasympathetic Analysis --- or --- do it as part of your comprehensive Metabolic Imbalance Testing.
- If you are doing the Unified Acid/Alkaline Analysis as part of comprehensive Metabolic Imbalance Testing, record your results on your comprehensive TEST RESULTS FORM. ----- If you are doing Unified Acid/Alkaline Analysis as a stand-alone, or, in conjunction with your Sympathetic/
Parasympathetic Imbalance Analysis, you may find it simpler to record your results on your MULTI-PURPOSE TEST RESULTS FORM.
- The only tests required for the Unified Acid/Alkaline Analysis Table are noted by a • on the Test Results Form ...
- Adjusted Urine pH
- Adjusted Urine Specific Gravity
- Adjusted Saliva pH
- Pa
- Respiratory Rate
- (Pa-P1)
- Breath Hold Time
- After obtaining the Adjusted UpH, SG, and SpH ...
- With the patient sitting relaxed on the exam table, say, "Please, no talking while I test --- it throws off the results." Count the Heart Rate for 15 seconds and multiply by 4 (= accurate to $1 / 4$ cycle $=171 / 4 \times 4=69$). That is your patient's Pulse a (Pa). Record Pa.
- Have the patient lie supine, and immediately after the patient is settled, count the Respiratory Rate for 30 seconds (= accurate to $1 / 4$ cycle) and multiply by 2. (Do not record the Respiratory Rate yet.)
- Immediately after completing the Respiratory Rate (i.e., exactly 30 seconds after lying supine), count the Heart Rate for 15 seconds (= accurate to $1 / 4$ cycle) and multiply by 4. This is Pulse 1 (P1). Record the Respiratory Rate and P1. Subtract and record ($\mathrm{Pa}-\mathrm{P} 1$).
- [If you are doing complete NUTRI-SPEC Metabolic Testing or Electrolyte/ Water Imbalance Analysis move on to your Blood Pressure \& Heart Rate Orthostatic tests. Otherwise ...]
- Have the patient sit up. Then, ask the patient to hold the breath as long as possible. Record the Breath Hold Time.
- SELECTING SUPPLEMENTS: Every supplement your patient needs to address any of these three Imbalances is found in one block of the supplement selection table. Match the row of your patient's Adjusted Urine pH to the column of the Adjusted Saliva pH and there you are --- with a half dozen or so possible choices. Select all choices that apply (and in some cases, none will apply).
- If your combined analysis from integrating 2 or 3 Analysis Tables yields both Oxy G \& Oxy K, then recommend neither.
- Of course, all your patients are also on Activator and the most appropriate Immuno-Synbiotic.
- IRON CLAD RULE THAT MUST NEVER BE IGNORED: If the supplement selections do not include either Oxy Tonic or Oxy D+, then your patient must immediately begin the BALANCING PROCEDURE to determine the ideal proportions of your Metabolic Sparks --- Oxy Tonic, Electro Tonic, and/or Oxy D+. The BALANCING PROCEDURE is the only way to completely individualize that patient's Metabolic Therapy.
- Remember, the Diphasic Nutrition Plan is the foundation of your LIVE STRONGER LONGER Metabolic Therapy. Give all your patients their individualized age- and health-appropriate DNP.
- That is all you need to do! ----- However, to make your Metabolic Therapy even more comprehensive you will integrate this analysis of Anaerobic/Dysaerobic, Glucogenic/Ketogenic, and Acid/Alkaline Imbalances with your Sympathetic/Parasympathetic Imbalance Support System Analysis.
- How much of each supplement selected by your Unified Acid/Alkaline Analysis do you recommend? On your initial Testing, start small --- then consider increasing if the same supplements need shows up on a follow up testing.
--- Oxy A 2 after breakfast
--- Oxy Tonic 1 scoop before breakfast
--- Oxy D 2 after the evening meal
--- Oxy D+ 15 drops before the evening meal
--- Oxy G 2 after any meal
--- Oxy K 2 after any meal
--- Complex P 3 after breakfast
--- Complex S 3 after the evening meal
--- Formula ES 2 2X after
--- Proton Plus 2 after the evening meal
--- Phos Drops 15 drops before any meal
--- NaBC $1 / 4$ tsp. before breakfast
--- NaCit 1 scoop before any meal *
--- KCit $1 / 2$ scoop before any 2 meals *
--- NaGP 1 scoop before breakfast
--- MgCl 21 scoop before any meal
* ----- The "slash" between the sodium and potassium citrate in your supplement menu means "or". You never give both.
----- The Electrolyte/Water Analysis, unlike the Unified Acid/Alkaline Analysis and the Sympathetic/Parasympathetic Analysis, is never used as a stand alone procedure. Your findings are to be integrated with your findings of either or both your other two Analyses. There is a high probability that one of your other two Analyses will indicate the need for one of the two citrates --or, the need for some other sodium-containing or potassium-containing supplements. You will choose whichever citrate matches your other findings. But another general rule to keep in the back of your mind is that those who have high blood pressure and/or significant Edema need the Potassium Citrate, while those with low blood pressure (unless there is significant Edema) benefit more from the sodium.

ADJ SPH \Rightarrow ADJ UPH	6.1 -	6.2-6.6	6.7-6.9	7.0-7.4	$7.5+$
5.3-	$\begin{aligned} & -\mathrm{SG}=15+=\text { water } \\ & -\mathrm{BH}=40-=\mathrm{NaBC} \\ & -\mathrm{RR}=18+=\mathrm{Na} / \mathrm{KCit} * \\ & -\mathrm{RR}=14-\& \mathrm{~Pa}=78+=\text { Form ES } \\ & \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp P } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & - \text { SG }=15+=\text { water } \\ & -S G=25+=\text { Oxy D \& D }+ \\ & -B H=35-=\text { NaBC, \& Oxy G } \\ & -R R=14-=\text { Oxy D \& D+ } \\ & -R R=18+=\text { NaGP, \& Oxy G } \\ & \\ & -(\text { Pa-P1 })=6+=\text { Comp P } \\ & -(\text { Pa-P1 })=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=15+=\mathrm{Oxy} \mathrm{D} \mathrm{\&} \mathrm{D+} \\ & -\mathrm{SG}=20+=\mathrm{Na} / \mathrm{K} \mathrm{Cit} * \\ & -\mathrm{BH}=35-=\mathrm{NaBC} \\ & -\mathrm{RR}=18+=\mathrm{NaBC} \\ & \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp P } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=25+=\text { Phos } \\ & -\mathrm{Oxy} \mathrm{D} \mathrm{\&} \mathrm{D}+ \\ & -\mathrm{BH}=35-=\mathrm{NaBC} \\ & -\mathrm{RR}=18+=\mathrm{NaBC} \\ & \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp P } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=25+=\mathrm{MgCl} 2 \\ & -\mathrm{Oxy} \mathrm{D} \& \mathrm{D}+ \\ & -\mathrm{BH}=35-=\mathrm{NaBC} \\ & -\mathrm{RR}=18+=\mathrm{NaGP} \\ & \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp P } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$
5.4-5.9	$\begin{aligned} & - \text { SG }=20+=\text { water } \\ & -S G=25+=\mathrm{Na} / \mathrm{KCit} * \\ & -\mathrm{BH}=40-=\mathrm{NaBC} \\ & -\mathrm{RR}=18+=\mathrm{NaGP} \\ & -\mathrm{RR}=18+\& \mathrm{~Pa}=78+=\mathrm{Oxy} \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp } \mathrm{P} \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & - \text { SG }=20+=\text { water } \\ & -S G=25+=\mathrm{Na} / \mathrm{KCit} * \\ & -\mathrm{BH}=35-=\mathrm{NaBC} \\ & -\mathrm{BH}=40-\& R R=18+=\mathrm{NaGP} \\ & -\mathrm{RR}=18+\& \mathrm{~Pa}=78+=\mathrm{Oxy} \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp } \mathrm{P} \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & - \text { SG }=25+=\text { Oxy D \& D }+ \\ & -\mathrm{BH}=35-\& R R=18+=\mathrm{NaBC} \\ & -\mathrm{BH}=40-\& \mathrm{~Pa}=78+=\mathrm{Na} / \mathrm{KCit} * \\ & -\mathrm{BH}=40-\& \mathrm{~Pa}=72-=\mathrm{NaGP} \\ & \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\mathrm{Comp} \mathrm{P} \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\mathrm{CompS} \end{aligned}$	$\begin{aligned} & - \text { SG }=20+=\text { Oxy D \& D }+ \\ & -S G=25+=\text { Phos } \\ & -B H=35+\& R R=16-=\text { MgCl2 } \\ & \\ & -(P a-P 1)=6+=\text { Comp P } \\ & -(P a-P 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=20+=\text { Oxy D \& D }+ \\ & -\mathrm{BH}=40+\text { \& RR }=14-=\text { Phos } \\ & -\mathrm{RR}=18+=\mathrm{MgCl} 2 \\ & -\mathrm{Pa}=78+=\mathrm{MgCl} 2 \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp P } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$
6.0-6.4	$\begin{aligned} & - \text { SG }=20+=\text { water } \\ & -S G=10-=\text { Oxy Tonic } \\ & -S G=25+=\text { Na/K Cit } * \\ & -B H=70+=\text { Phos } \\ & -B H=35-\& R R=20+=\text { Oxy G } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp } \mathrm{P} \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & - \text { SG }=25+=\text { water } \\ & -S G=12-=\text { Oxy A \& Oxy T } \\ & -B H=70+=\text { Phos } \\ & -B H=30-=\mathrm{Na} / \mathrm{K} \mathrm{Cit} * \\ & \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp } \mathrm{P} \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=25+=\mathrm{Oxy} \mathrm{~K} \text { and } \mathrm{MgCl} 2 \\ & -\mathrm{SG}=12-=\mathrm{Oxy} \text { G \& NaGP } \\ & -\mathrm{SG}=25+=\text { water } \\ & -\mathrm{SG}=12-=\mathrm{X} \text { water } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp P } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=12-\& \mathrm{BH}=60+=\text { Proton }+ \\ & -\mathrm{SG}=15+\& \mathrm{BH}=60+=\text { Phos } \\ & -\mathrm{BH}=35+\& \mathrm{RR}=16-=0 \mathrm{Oxy} \mathrm{~K} \& \\ & \mathrm{MgCl} 2 \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp } \mathrm{P} \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=20+=\mathrm{Phos} \\ & -\mathrm{SG}=19-\& \mathrm{BH}=40+=\text { Proton }+ \\ & -\mathrm{BH}=35+\& \mathrm{RR}=16-=0 \mathrm{xy} \mathrm{~K} \& \\ & \mathrm{MgCl} 2 \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp P } \\ & -(\text { Pa-P1 })-=(-1)-=\text { Comp S } \end{aligned}$
6.5-6.9	$\begin{aligned} & -S G=15-=\text { Oxy A \& Oxy T } \\ & -S G=10+\& B H=70+=\text { Phos } \\ & -S G=25+=\text { water } \\ & -R R=12-=\text { Phos } \\ & -R R=20+=\text { Proton }+ \\ & \\ & -(\text { Pa-P1 })=6+=\text { Comp P } \\ & -(\text { Pa-P1) }=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=20-=0 \times y \mathrm{~A} \& \mathrm{Oxy} \mathrm{~T} \\ & -\mathrm{BH}=50+\& R R=14-=\text { Phos } \\ & -\mathrm{RR}=20+=\text { Proton }+ \end{aligned}$ $\begin{aligned} -(P a-P 1) & =6+=\text { Comp P } \\ -(P a-P 1) & =(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=15-=\text { Oxy A \& Oxy T } \\ & -\mathrm{BH}=50+=\text { Phos } \\ & -\mathrm{BH}=40+\text { \& RR = } 16-=0 x y ~ K \\ & -R R=14-=\text { Phos } \\ & -R R=20+=\text { Proton }+ \\ & \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp P } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=12-=\mathrm{Oxy} \mathrm{~A} \mathrm{\&} \mathrm{Oxy} \mathrm{~T} \\ & -\mathrm{SG}=12-\& B H=50+=\text { Proton }+ \\ & -\mathrm{SG}=15+\& B H=60+=\text { Phos } \\ & -\mathrm{BH}=35+\& \mathrm{RR}=16-=\text { Oxy K \& } \\ & \mathrm{MgCl} 2 \\ & -\mathrm{RR}=20+=\text { Proton }+ \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp P } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=12-\& \mathrm{BH}=39-=\mathrm{Oxy} \mathrm{~A} \mathrm{\&} \mathrm{Oxy} \mathrm{~T} \\ & -\mathrm{SG}=20-\& B H=40+=\text { Proton }+ \\ & -\mathrm{SG}=21+\& B H=40+=\text { Phos } \\ & -\mathrm{BH}=35+\& \mathrm{RR}=16-=\text { Oxy K \& } \\ & \mathrm{MgCl} 2 \\ & -\mathrm{RR}=20+=\text { Proton }+ \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp P } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$
$7.0+$	$\begin{aligned} & -\mathrm{SG}=20-=\text { Oxy A \& Oxy } \mathrm{T} \\ & -\mathrm{BH}=70+=\text { Phos } \\ & -\mathrm{RR}=14-=\text { Phos } \\ & -\mathrm{RR}=20+=\text { Proton }+ \\ & -\mathrm{Pa}=64-=\text { Phos } \\ & -(\text { Pa-P1 })=6+=\text { Comp P } \\ & -(\text { Pa-P1 })=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=20-=\mathrm{Oxy} \mathrm{~A} \& \mathrm{Oxy} \mathrm{~T} \\ & -\mathrm{SG}=15-\& B H=55+=\text { Phos } \\ & -\mathrm{BH}=50+=\text { Phos } \\ & -\mathrm{RR}=12-=\text { Phos } \\ & -\mathrm{RR}=20+=\text { Proton }+ \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp P } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp } \mathrm{S} \end{aligned}$	$\begin{aligned} & -\mathrm{SG}=20-=\mathrm{Oxy} \mathrm{~A} \& \mathrm{Oxy} \mathrm{~T} \\ & -\mathrm{SG}=15-\& \mathrm{BH}=55+=\text { Phos } \\ & -\mathrm{RR}=12-=\text { Phos } \\ & -\mathrm{RR}=20+=\text { Proton }+ \\ & -(\mathrm{Pa}-\mathrm{P} 1)=6+=\text { Comp P } \\ & -(\mathrm{Pa}-\mathrm{P} 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -S G=12-=\text { Oxy A \& Oxy T } \\ & -S G=15-\& B H=40+=\text { Proton }+ \\ & -S G=15-\& B H=30-=\text { MgCl12 } \\ & -B H=40+\& R R=12-=\text { Proton }+ \\ & -R R=20+=\text { Proton }+ \\ & -(P a-P 1)=6+=\text { Comp P } \\ & -(P a-P 1)=(-1)-=\text { Comp S } \end{aligned}$	$\begin{aligned} & -S G=12-\& B H=39-=O x y ~ A ~ \& ~ O x y ~ T \\ & -S G=20-\& B H=40+=\text { Proton }+ \\ & -S G=20-\& B H=39-=M g C l 2 \\ & -B H=60+\text { OR RR }=12-=\text { Proton }+ \\ & -R R=20+=\text { Proton }+ \\ & -(P a-P 1)=6+=\text { Comp } P \\ & -(P a-P 1)=(-1)-=\text { Comp S } \end{aligned}$

